Electrochemical Reduction of Chlorodi-(1,3-Bisdiphenylphosphinopropane)osmium(II) Hexafluorophosphate

GIANNI ZOTTI, GIUSEPPE PILLONI

Consiglio Nazionale delle Ricerche, Laboratorio di Polarografia ed Elettrochimica Preparativa, Corso Stati Uniti 10, 35100 Padua, Italy

MARIO BRESSAN and MARIO MARTELLI

Consiglio Nazionale delle Ricerche, Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, c/o Istituto di Chimica Analitica dell'Università, Via Marzolo 1, 35100 Padua, Italy

Received May 27, 1978

The d^7 configuration is rather rare among monomeric transition metal complexes, the known examples being most exclusively complexes of cobalt(II) which dictate the solution chemistry of these species. In particular the low-spin cobalt(II) complexes are labile to substitution in one or more axial positions and, in these positions, exhibit little affinity for binding of ligands [1]. In line with these results there has been found the chemistry of $[Rh(NH_3)_5CI]^*$ generated by pulse radiolysis [1] and the chemistry of RuCl(DPP)₂ (DPP = 1,3-bisdiphenylphosphinopropane) electrochemically generated, suggesting that the axial lability could be a common feature to d^7 species.

With the aim to check this conclusion inside the iron triad it seemed to us appropriate to study the electrochemical reduction of $[OsCl(DPP)_2]^+$ and here we report the results.

Experimental

The osmium complex, $[OsCl(DPP)_2](PF_6)$, was prepared and purified according to the literature [3]. The other chemicals, 1,2-dimethoxyethane, tetrabutylammonium perchlorate (TBAP), tetrabutylammonium chloride (TBAC), were as previously described [2].

The apparatus and the technique which were involved in the use of the polarographic apparatus, controlled potential coulometry and cyclic voltammetry have also been described previously [2].

Results and Discussion

The electrochemical pattern of $[OsCl(DPP)_2]^*$ in 1,2-dimethoxyethane containing TBAP (0.1 *M*) is

virtually identical with that found in the reduction of the related ruthenium complex [2]. Polarographic and cyclic voltammetric measurements indicate that $[OsCl(DPP)_2]^+$ undergoes an uncomplicated, reversible, one-electron step ($E_{1/2} = -0.84$ V vs. SCE) and a further reversible, one-electron transfer ($E_{1/2} = -1.45$ V) followed by a fast, irreversible, chemical reaction:

Controlled potential electrolysis on the plateau of the second wave requires two equivalents of electrons per mol of depolarizer and affords a pale yellow solution whose polarogram shows an anodic wave at -0.25 V attributed to free Cl⁻. By evaporation of the solvent and subsequent extraction with toluene followed by addition of light petroleum a crystalline yellow product is obtained. Its IR spectrum (KBr disc) shows a hydride band at 2040 cm⁻¹ and a further band at 730 cm⁻¹ characteristic of an *ortho*substituted benzene [4]. These results suggest that the chemical reaction following the electron transfer is:

$$[OsCl(DPP)_{2}]^{-} \longrightarrow Cl^{-} + HOs(C_{4}H_{4}PPh \cdot CH_{2}CH_{2}CH_{2} \cdot PPh_{2})(DPP) \quad (2)$$

Elemental analysis and the known reaction of hydride complexes with CCl_4 confirm the proposed formulation.

Controlled potential electrolysis on the plateau of the first wave, while requiring one mol of electrons per mol of depolarizer, affords a blue, exceedingly air sensitive, solution which shows an absorption band at 485 nm with a shoulder at 710 nm and gives a strong ESR signal (frozen sample) pointing to the presence of one unpaired electron. With time a discharge of the colour is noted and the one-electron reduction product, viz. OsCl(DPP)2, by analogy with the behaviour of the corresponding ruthenium complex [2], slowly undergoes a disproportionation reaction to yield $[OsCl(DPP)_2]^*$, $HOs(C_6H_4PPh \cdot CH_2CH_2CH_2 \cdot$ PPh₂)(DPP) and Cl⁻. However, the disproportionation rate of $OsCl(DPP)_2$, unlike that of $RuCl(DPP)_2$ [2], is not drepressed by the presence of an excess of TBAC and obeys a first order kinetic law (kobs = 1×10^{-4} s⁻¹ at 25 °C), meaning that in this case the

loss of the chloride ligand is the rate determining step [2].

Once more it appears that the d^7 pentacoordinated species is characterized by the lability in the ligands. In this context the lability of Cl⁻ is in the order Os < Ru, suggesting that the five-coordinate d^7 complex is kinetically more stable in the third series in comparison with the second one. Similar results have already been reported for rhodium(II) and iridium(II) hydrido complexes [5].

References

- 1 J. Lilie, M. G. Simic and J. F. Endicott, Inorg. Chem., 14, 2129 (1975) and references therein.
- 2 G. Zotti, G. Pilloni, M. Bressan and M. Martelli, J. Electroanal. Chem., 75, 607 (1977).
- 3 M. Bressan, R. Ettorre and P. Rigo, Inorg. Chim. Acta, 24, L57 (1977).
- 4 G. Hata, H. Kondo and A. Miyake, J. Am. Chem. Soc., 90, 2278 (1968).
- 5 G. Pilloni, G. Schiavon, G. Zotti and S. Zecchin, J. Organometal. Chem., 134, 305 (1977).